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Disclaimer

The exercises, software, code and equations in this course are for educational and demonstrative
purposes only. They should not be used to analyse, design, test, accredit or validate real
scientific/engineering/mathematical structures and flow systems. For such applications,
appropriate trained, qualified and accredited engineers/scientists should be consulted. Fluid
Mechanics 101 and Dr. Aidan Wimshurst are not accountable or liable in any form for the

use or misuse of the information contained in this course beyond the specific educational and
demonstrative purpose for which it was intended.



Foreward

Welcome to my Computational Fluid Dynamics Fundamentals Course! | put together this
course to help you develop a deep understanding of computational fluid dynamics (CFD), so
that you can set up, run and post-process engineering simulations of fluids (liquids and gases)
more effectively. This course starts from the absolute basics, with the only prior knowledge
required being basic calculus, differential equations and vector operations. These basics are
typically taught during first year college/university courses and in some cases secondary/high
school lessons. Hence, this course is perfect for anyone with a foundational background in
science/mathematics/engineering or physics.

Having carried out several years of CFD studies myself, | found that many areas of the CFD
process were hidden or poorly explained. This often made it difficult for me and my colleagues
to set up and analyse simple flow simulations. The aim of this course is to guide you through
some simple flow simulations interactively, with working CFD code that you can set up and
run yourself. The entire process if transparent and documented/explained and no specific

CFD code is required. By the end of this course, you will have set up and run CFD simulations
from scratch and observed first hand the effect of different discretisation schemes on the
solution. Having carried out these simulations yourself, you can return to full-scale CFD codes
with confidence and a deep understanding of how the CFD code is operating. This will
ultimately lead to better simulations, results and problem solving skills.

| am really excited to bring you this course and know that you will find it as useful as | have.
The interactive exercises may even answer some long standing technical questions that you
never found the answer to ...

All the best
Aidan



How To Use This Course

This course contains a comprehensive set of equations, explantations and diagrams, which are
all contained in this PDF book. It is recommended that you follow along with the content in
this book from start to finish, as Chapter 3 and 4 follow chronologically from Chapter 1 and 2.
As you proceed through Chapter 2, 3 and 4, worked examples are provided. When instructed,
it is advied that you open the example code (either in Microsoft Excel or in a suitable text
editor/graphical user interface (GUI) for Python). Here you will be able to examine the code,
modify the input variables and run the CFD simuations yourself. This is where the majority of
the learning is likely to take place and is highly encouraged for all readers.

All of the exercises can be completed using either the Excel or Python scripts. Use

whichever approach is more appealing and straightforward for you to follow. Alternatively,

you can use the equations that are provided in the text to write your own code/scripts to
solve the equations! The aim of this course is not to develop knowledge of a specific language
or CFD code, but to learn and observe the overall process. Hence, it is highly encouraged for
you to take your preferred approach.



Chapter 1

Introduction to Transport Equations




1 INTRODUCTION TO TRANSPORT EQUATIONS

1 Introduction to Transport Equations

A solid body will remain stationary or in motion at constant velocity unless acted on by
external forces. When acted on by external forces, the momentum of a solid body will change
according to Newton's second law. For a solid body with constant mass, Newton's second
law can be written concisely in differential form as:
dv
F =ma — F=m— (1)
dt
where F' is the sum of the forces acting on the body, v is the velocity of the body, m is the
mass of the body and bold symbols represent vector quantities. If the mass of the solid body
changes with time, then equation 1 becomes:

d(mw)

F="u )

Hence, Newton's second law physically states that the rate of change of momentum (mass
multiplied by velocity), is equal to the sum of the external forces acting on the body. The solid
body velocity (v) is a vector quantity. In a Cartesian coordinate system, the solid body velocity
can be resolved into components in the z,y and z directions (v = (v, vy, v,)). Hence, when
written in vector form, Newton's second law is a compact way of expressing three individual
equations for the change of momentum of the body in the =, y and z directions.

d(mu,) d(mu,) d(muv,)

F.’E = F = FZ —
dt Y dt dt (3)

If the mass of the object and the forces acting on it are known, then Newton's second law
can be solved to calculate the velocity (v) of the object at a given time. The equations are
solved by integration. In the same way that the velocity of a solid body can be calculated
by solving Newton's second law, the velocity of a fluid (liquid or gas) can be calculated by
solving the Navier-Stokes equations. The Navier-Stokes equations are analogous to Newton's
second law and state that the rate of change of momentum of a fluid is equal to the sum of
the external forces acting on the fluid. However, the Navier-Stokes equations are applied to
a parcel/finite volume of fluid rather than a solid body.

Figure 1 shows an example of a fluid parcel/volume that forms a part of the fluid con-
tinuum. The parcel has a volume V and can be any size. In concise vector form, the
Navier-Stokes equations can be written as:

D (mU)

pr ¥ )

where m is the mass of the fluid parcel, U is the velocity of the fluid parcel and F' is the
sum of the external forces acting on a fluid parcel. Note the similarities between this form
of the Navier-Stokes equations and Newton's second law for a solid body (equation 2). It is
standard practice to divide the Navier-Stokes equations by the volume of the fluid parcel, as
this is constant. This simplification leads to:

D (pU)
Dt

=f (5)

where p is the fluid density and f is the sum of the external forces per unit volume, acting on
the fluid parcel. In the same manner that Newton's second law can be solved by integration to
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Figure 1: A finite parcel/volume of fluid that forms a part of the fluid continuum.
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Figure 2: Calculating the flow of air over a wing allows the lift and drag forces acting on
the wing to be calculated.

calculate the velocity of a solid body, the Navier-Stokes equations can be solved to calculate
the velocity (motion) of the fluid. Once the velocity of the fluid has been determined, the
forces acting on the solid surfaces that are in contact with the fluid can be computed. For
example, solving the Navier-Stokes equations for the flow of air around a wing allows pressure
and skin friction forces acting on the wing to be calculated (see Figure 2). These forces
generate lift and drag and allow the plane to fly. Hence, solving the Navier-Stokes equations
numerically (for real geometries) is of considerable interest to scientists and engineers. Solving
the Navier-Stokes equations numerically will be the focus of this fundamentals course.

Fluid Acceleration

In the Navier-Stokes equation (equation 5), the change in momentum of the fluid parcel has
been written as:

D(pU) (6)

Dt

where D /Dt is the total derivative. The total derivative has been used instead of the temporal
derivative (d/dt) in the Navier-Stokes equation. The reason for this change is the fluid volume
may change its momentum in time and also change its momentum as it moves through space.
For example, consider the flow of water through a garden hose (Figure 3), which is held at
a constant flow rate. The overall flow rate of water will be constant with time if the tap is
kept open at the same setting. However, the water accelerates (in space) as it moves into
the nozzle. As time advances while the water moves through space, the water experiences an
acceleration in time as it moves through the nozzle. The total derivative can be expanded to
show the change in time and the change in space. Adopting a Cartesian coordinate system
for the spatial dimensions (z, y and 2):

Fluid Mechanics 101 3
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Hose pipe Nozzle

Constriction

Figure 3: The flow of water through a garden hose. The water accelerates as it moves
through the nozzle due to the contraction. Even if the global flow does not change in time,
a fluid parcel accelerates in time as it moves through the nozzle due to the contraction.
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The first term represents the change in momentum in time and the second, third and fourth
terms represent the change in momentum in the x, y and z spatial directions respectively, as
the fluid parcel is convected through the flow field. In vector form, the total derivative can

be written compactly as:
D 0

— 4 U- 8

bi o TYY (8)

By using the expanded form of the total derivative, the Navier-Stokes equations can be written:
a(pU

) U v o0) = f ()

Equation 9 can be simplified slightly by applying conservation of mass and the product rule.
For conciseness, the details are not included here.
9 (pU)
ot

+V - (pUU) = f (10)

While the Navier-Stokes equations have been expanded and rewritten, their physical interpre-
tation remains the same. The change in momentum of a fluid parcel in time is equal to the
sum of the forces acting on the fluid parcel.

External Forces

Depending on the flow condition, a variety of external forces may act to change the momentum
of a fluid. Three of the most common forces that act to change the momentum of fluids are
pressure, viscosity and gravity. These terms are included in the Navier-Stokes equations as
forces (per unit volume) on the right hand side of the equation:

J(pU
L-I-V-(pUU):—Vp-i- V-1 +£g/ (11)

ot
Pressure  Shear Stress Gravity
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Figure 4: The flow of cold air over a hot plate, cooling the plate.

where p is the static pressure (normal stress), T is the shear stress (which includes the action
of viscosity) and g is the acceleration due to gravity. All of the terms on the right hand-side
represent forces acting on the fluid parcel, while the terms on the left hand-side represent the
acceleration of the fluid parcel in response to the forces. Physically, the equations state that
pressure, gravity and viscosity all act to change the momentum of the fluid (pU). By solving
the equations numerically, the velocity of the fluid can be computed in response to these
forces. Once the equations are solved, the forces acting on the solid surfaces that contact the
fluid can be computed.

In this course, the Finite Volume Method will be examined, which is the most popular
method for solving the Navier-Stokes equations numerically. By following this course, you will
develop an understanding of the fundamentals of how the finite volume method can be used
to solve the Navier-Stokes and other transport equations.

Transport Equations

In addition to solving the Navier-Stokes equations to determine the fluid velocity (U), ad-
ditional equations may need to be solved, depending on the application. For example, the
fluid flow may be used to cool a hot surface, as shown in Figure 4. In this instance, the
fluid transports heat away from the surface, cooling the surface. In order to determine rate
of cooling of the hot surface by the fluid, the temperature (and velocity) of the fluid need
to be computed. For air or water cooling at low velocity (incompressible flow), the following
equation can be solved to compute the temperature T' of the fluid:

9 (pe,T)

OIS 4V - (pepUT) = V - (KVT) +5 (12)

Convection Diffusion

where ¢, is the specific heat capacity of the fluid, k is the thermal conductivity of the fluid
and S is a heat source (per unit fluid volume). This type of equation is called a transport
equation, as the temperature (representing the thermal energy of the fluid) is transported by
the motion of the fluid (U).

Thermal energy is transported through the fluid by two main mechanisms: convection and
diffusion. Thermal energy is also transported by radiation, but this will not be considered here.
The mathematical form of the convective and diffusive transport mechanisms are highlighted
in equation 12. Diffusion represents the physical process where thermal energy moves from
areas of high temperature to areas of low temperature due to the temperature gradient (see
Figure 5). The diffusion of heat takes the following mathematical form:

o ( 0T\ o ( oT\ 0 (, 0T
V- (kVT) = %<kam>+ay<kay>+az<k82> (13)
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Figure 5: Heat diffuses from regions of high temperature to regions of low temperature.
This diffusion is represented mathematically by V - (kVT).

The thermal conductivity k gives the strength of diffusion. A highly conductive material (such
as copper) will transfer significant quantities of heat with a small temperature gradient. On
the other hand, thermal insulators (like oven gloves) have low thermal conductivity £ and will
transmit relatively little heat, even with a large temperature gradient.

Diffusion occurs in moving and stationary fluids, hence it does not depend on the velocity
of the fluid U. Diffusion is often referred to as conduction, when applied to solids. In a
stationary fluid where the velocity U = 0, the convection term is zero and the temperature
equation reduces to:

9(peT) _ V- (kVT)+S (14)
ot N
Diffusion

Convection of heat is the transport of thermal energy by the motion (velocity) of the fluid. It
has the following mathematical form:

VopeUT) = (eTUD + 5 (6 TU) + 5 (e TV (15)
The thermal energy is physically transported by the motion of the moving fluid (U). This
is similar to the transport of leaves and branches that are dropped into a moving river. The
leaves and branches are physically transported by the motion of the fluid and are carried along
with the river. Convection increases the rate of heat transfer and is the reason why blowing
over the surface of a hot drink reduces its temperature, so that we can drink it!

Other Transport Equations

A variety of quantities that are transported by fluids follow a similar transport equation to
the temperature/thermal energy equation. On example is the injection of dye or fine solid
particles into a flow stream, as shown in Figure 6. The particles will be convected by the
fluid and will also diffuse from areas of high concentration to low concentration. Hence, the
concentration C' of dye/solid particles follows a similar transport equation to temperature:

9(pC)
ot

LV (pUC) =V - (DVC) +8. (16)

Convection Diffusion

where D is the diffusivity of the dye/solid particles. The transport equations that govern
the convection and diffusion of quantities in a fluid flow (velocity, temperature, concentration
etc.) all share the same common form:

a(ai@ij.(pUqﬁ) =V -(I'Vg)+ Sy (17)
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High Concentration » Low Concentration

Figure 6: The concentration of dye/solid particles diffuses from regions of high
concentration to regions of low concentration. This diffusion is represented mathematically
by V - (DVC)

where ¢ is a transported quantity (velocity, temperature, concentration etc.), p is the fluid
density, I' is the diffusivity of the quantity and Sy is the additional source per unit volume
of the quantity ¢. In this course, the finite volume method will be used to solve a general
transport equation that includes convection, diffusion and a source term. As the governing
equations of fluid flow all share the same general form, the same method can then be applied
to any transport equation (velocity, temperature, concentration etc.) that is required.

In the three remaining chapters in this course, the finite volume method will be applied
to a transport equation for temperature. Temperature has been chosen specifically in this
course, as it is conceptually the most straightforward quantity to understand while applying the
method. The same techniques applied in this course can then be applied to any transported
quantity of interest, by following the same analysis steps. The diffusion and source terms
will be considered first, to develop a general understanding of the method. The convection
term will then be added in the third chapter of this course, allowing the effects of diffusion
and convection to be studies simultaneously. In the fourth chapter of this course, a special
technique called upwind differencing will be introduced. This technique is essential to solve
the majority of convection-diffusion equations and is adopted by all modern CFD codes.

Fluid Mechanics 101 12
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2 THE 1D DIFFUSION EQUATION

2 The 1D Diffusion Equation

In the previous chapter, the convection-diffusion equation for the transport of temperature
(thermal energy) was introduced.

I(pc,pT)
ot

In this chapter, the transport equation for temperature will be solved for the limited case of
one-dimensional (1D) steady-state diffusion. This limited case will be used to introduce the
finite volume method and demonstrate how it works. The same approach can also be applied to
other transport equations (momentum, species concentration, turbulence etc.). Temperature
has been specifically chosen for this chapter, as it is conceptually the most straightforward
to follow and understand. In the next chapter, the one-dimensional steady-state diffusion
example will be extended to also include convection. Starting with the three-dimensional
(3D) transport equation for thermal energy (temperature), the temporal derivative and the
convection term will be neglected in this chapter.

7’)@’+W (kVT) + S (19)

+V - (pc,UT) =V - (kVT)+ S (18)

0=V (kVT)+ S (20)
Expand the gradient (V) and dot product (V-) operators in Cartesian coordinates:
o ( oT o ( or o ( 0T

For one-dimensional diffusion, the y and z derivatives are zero.

0= . (k;dx> +S (23)

Equation 23 is the 1D steady-state heat diffusion equation. This equation will be solved using
the finite-volume method, which is the most common approach used by modern CFD codes.
The finite volume method can also be applied to more detailed equations and is not limited to
one dimensional analysis. However, one dimensional flow has been specifically selected here
to illustrate the principals of the method clearly.

Equation 23 is a differential equation (not an algebraic equation). Hence, the solution of
this equation requires integration and the application of boundary conditions. Rather than
integrate the equation over the entire domain of interest, the first stage in the finite volume
method is to integrate the equation over a small piece of the domain. This piece is called a
finite volume or parcel of fluid. Figure 7 shows an example of a finite volume of fluid, which
forms a part of the continuum of fluid. Remember that the differential equation is valid for
every finite volume of fluid in the domain, regardless of the size of the volume and its location.
Mathematically, the integration process is described as:

/ [di (kfé) + S] dV =0 (24)

Fluid Mechanics 101 14
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Figure 7: A finite volume of fluid, which has been isolated from the fluid continuum.

1D Bar

/\ Control Volume

Figure 8: A 1D finite volume of fluid with volume V', which has been isolated from the bar.

The integration of each term can be considered separately, as addition and integration are
commutative operations (it does not matter which order they are carried out in).

/V LZB (kigﬂ dV+/V[S] dvV =0 (25)

In one-dimension, the control volume forms a part of a one-dimensional geometry, as shown
in Figure 8. This control volume can be thought of as a piece of a bar that is conducting
heat from one-end to the other, with constant properties over its cross-section. The second
term in equation 25 represents the heat source generated in the finite volume. Assume that
the heat source is constant across the control volume, with a value of S (the volume average
heat source). The second term in the finite volume integral can now be simplified.

/ LZC <k£>]dv+5/vdvzo (26)

/V LZS (kig)] dV + 8V =0 (27)

The source term S has units of W/m3. Hence, the product SV has units of V.

The first term in equation 25 is the volume integral of the heat diffusion inside the control
volume. To simplify and evaluate this term, the divergence theorem is required. Physically,
the divergence theorem states that the rate of accumulation of a vector field inside a control
volume is equal to the flux of the vector field across the surfaces of the control volume. When
applied to the heat diffusion equation, this theorem can be thought of as an expression of
conservation of energy. Heat accumulating inside the control volume by diffusion must cross
the surfaces of the control volume if there are no additional sources of heat in the volume,
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/V(V-A)dV

Acummulation
Flux out of Volume Flux out of Volume

in the Volume

/A(A-ﬁ)dA ”.?L ) dA

Figure 9: A diagram to show the physical significance of the divergence theorem applied to
vector field A. The accumulation of A in the volume equals the flux of A over the surfaces
of the volume.

L 3 Left face Right face

Figure 10: A diagram to show the face normal vectors on the left and right faces of the 1D
cell. The cell normal vectors always point out of the cell.

as shown in Figure 9. Mathematically, the divergence theorem for a general vector field A is
written as:

/V(V.A)dV:/A(A-n)dA (28)
04, 04, 0A.\ ..
/, ( or oy T o- ) AV = [ (ane + Ay, + Aonz) dA (29)

where 71 is the unit normal vector pointing out of the control volume and A is the surface
area of the control volume. In 1D, the divergence theorem can be written:

dA
)av = [ (Ai,)da 30
[ (S )av = [ acn (30)
For the 1D heat diffusion equation A = kVT. Hence A, = k d7T/dz. Applying the 1D
divergence theorem to the 1D heat diffusion equation leads to:

dT -
/A (Kdmnz> dA+ SV =0 (31)

Physically, equation 31 states that the flux of heat out of the cell by diffusion must balance
the heat generated within the cell. To simplify this equation further, consider the 1D cell in
Figure 10. The cell has a left face [ and a right face r. Lower-case letters [ and r are used in
this course to refer to the left and right faces of the cell, while upper-case L and R are used
to refer to the centroids of the neighbour cell that are on the left and right of the cell under
consideration. The flow quantities (temperature, thermal conductivity etc.) are constant on
the cell face. Hence, the first integral can be simplified:

T -
<f@dxnm> /A dA+SV =0 (32)
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Figure 11: A comparison of interior cells (a) and boundary cells (b) in the mesh.

dr ar —
k—mn A + [k—n,A] +SV =0 (33)
dx , dx .
As shown in Figure 10, n, is positive on the right face and negative on the left face. Hence:
dr ar _
kA— | — | kA— SV =0 34

This simplified form of the 1D heat-diffusion equation is valid for all cells in the mesh. However,
it cannot be solved yet numerically, as the equation is written in terms of variables on the cell
faces (I and 7). In the cell-centred finite volume method, the equation is solved in terms of
variables at the cell centroids (L, R and P). To carry out the necessary simplification, interior
cells and boundary cells need to be considered separately. As shown in Figure 11, interior
cells are in the interior of the geometry and are connected to other cells. However, boundary
cells are connected to a boundary of the domain (such as an inlet or wall) on one or more
of their faces. In the sections that follow, the interior and boundary cells will be considered
separately when simplifying equation 34.

Interior Cells

Start with the general finite volume discretisation of the 1D heat-diffusion equation.

dT ar\
(kAdx>r - <I<:Adx>l +5V =0 (35)

To simplify and solve this equation for the interior cells, the temperature gradient on the
cell faces (I and 7) need to be expressed in terms of temperatures at the cell centroids (L,
R and P). This simplification can be accomplished with linear interpolation, which is often
called central-differencing. To help understand this simplification, remember that the spatial
gradient of temperature can be thought of as:

dI’ AT Change in Temperature
der Az Distance

(36)
As shown in Figure 12, the temperature gradient on the left face can be expressed using

central differencing as:
ar Tp — 1T},
— £ -~ 7

< dx )z dpp G7)

where d;p is the distance between the cell centroids L and P. In a similar manner, the
temperature gradient on the right face can also be expressed using central differencing:

dT Tr —Tp
) = -7 38
(d‘r>r dPR ( )
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Figure 12: Central differencing (linear interpolation) of the temperature gradient on the
left face of the cell using the values at the cell centroids of the interior cell (7) and the left
cell (T7).

Substitute this simplification into the 1D heat-diffusion equation (equation 35).

Th—T To—Ty\ -
RP) - (k:,AlPL)JrSV—O (39)

drp

k. A,
( dpr

The 1D diffusion equation can now be solved for the temperatures at the cell centroids (77, Tx
and Tp). To simplify this process, rearrange the equation and collect the terms in terms of
temperature of the interior cell (T), temperature of the left cell (7},) and the temperature
of the right cell (TR).

kA kA, kA kAN
Tp <”+ >:TL <”>+TR< >+SV (40)
drp dpr drp dpr

For convenience, introduce the notation D = k/d. This quantity can be thought of as the
diffusive flux of heat per unit area through the cell face and has units of W/m?K.

Tp (D14, + D, A,) = Ty, (DA) + Tr (D, A,) + SV (41)

For consistency with other equations that will be introduced later, write the above equation
in the following form:

apr = aLTL + CLRTR + Su (42)
Tp (DlAl + D, A, + 0) =T (DZAZ) +Tgr (DTAT) +SV (43)
N—_—— N—_—— \S/
ap ar, aRr u

Hence, the following coefficients can be identified. These coefficients will be compared with
other formulations of the convection-diffusion equation in the next two chapters.

ap = Gy + ag — Sp ar, = DiA; ag = D, A, (44)
Sp=0 §,=8V (45)

At this stage, we now have an algebraic equation for the temperature at the centroid of the cell
Tp. This is the unknown in the equation that we want to solve for. However, the temperature
of the cells on the left and right of this cell (77, and Tg) are also unknown. To overcome this
difficulty, one equation will be written for every cell in the mesh, with the unknown of each
euqgation being the temperature of that cell centroid 7. Each of these equations is coupled
to the equations of the cells on the left and right of the cell through the variables T}, and T,
as shown in equation 43. Before proceeding to assemble and solve these equations, separate
treatment is required for the boundary cells.
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Figure 13: The left boundary cell with temperature Tp at its centroid. The shared face
between the boundary cell and the right cell is at a temperature 7, and the wall has a
temperature T; = T'4.

Boundary Cell (Left)

Figure 13 shows the boundary cell at the left end of the bar. The cell is connected to the
boundary (wall) at the left face, where a fixed temperature T4 is applied. The finite volume
discretisation of the 1D heat-diffusion equation (equation 34) is:

dT ar\ -
(kAcm)r - <kAdx>l +5V =0 (46)

The right face of the boundary cell is connected to an interior cell. Hence, the same central
differencing scheme for the temperature gradient from the previous section can be used.
However, the left face is connected to a boundary. As shown in Figure 13, the temperature
gradient term for the left face is:

dx dpp/2

The factor of 1/2 is required as the distance from the cell centroid to the face is 1/2 of
dpp (the distance from the cell centroid to the cell centroid of the adjacent cell). The finite
volume discretisation of the 1D heat-diffusion equation for the left boundary cell is now:

TR—TP> ( TP—TA> —
kA, ———— ) — | KA——— | + SV =0 48
( dpr U dp )2 (48)

Again, introduce the notation D = k/d for the diffusive heat flux per unit area.

(dT)l _ Tp —Ty (47)

Tp (2D1Al -+ DTAT) =Tk (DTAT) + Ty (QDZAI) + SV (49)

For consistency with the interior cell, write in the following form:

apr = CLLTL + CLRTR + Su (50)

Tp (0+ D, A, +2D;A) =Ty, (0) +Tr (D, A,) + T4 (2D A) + SV (51)
~— ~—— S
ap ary, aR u

For comparison with the interior cell, the boundary cell (left) has the following coefficients:

arp =0 ar = D, A, a, =ar +ar — Sy (52)
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Figure 14: The right boundary cell with temperature T at its centroid. The shared face
between the boundary cell and the left cell is at a temperature T; and the boundary has a
temperature T, = T'g.

Sp=—2D4;  S,=Ta(2Di4) + SV (53)

Comparing these coefficients with the coefficients for the interior cell, it can be seen that
the left coefficient ay, is zero. This makes sense physically, because the boundary cell is not
connected to another cell on the left. The influence of the boundary condition is introduced
into the equation through the source terms S, and S,,.

Boundary Cell (Right)

The boundary cell on the right of the domain is shown in Figure 14. The cell is connected to
the boundary at the right face, where a fixed temperature T's is applied. The finite volume
discretisation of the 1D heat-diffusion equation from equation 34 is:

dT ar\ -
(kAcm)r - <kAdx>l +5V =0 (54)

The left face of the boundary cell is connected to an interior cell. Hence, the same face
interpolation schemes from the previous section can be used. However, the right face is
connected to a boundary. As shown in Figure 14, the temperature gradient term for the right

face is: T - -
B—1p

b R 55

<d$>r dpR/2 ( )

The factor of 1/2 is required as the distance from the cell centroid to the face is 1/2 of
dpr (the distance from the cell centroid to the cell centroid of the adjacent cell). The finite
volume discretisation of the 1D heat-diffusion equation is now:

Tg —Tp ( Tp — TL> _
kA ————— | — (ki Ai————— ) + SV =0 56
( dpr/2 ) . drp (56)

Again, introduce the notation D = k/d for the diffusive heat flux per unit area.
Tp (DjA; + 2D, A,) = Ty, (DiA) + Ts (2D, A,) + SV (57)
For consistency with the interior cell, write in the standard form:

apr = CLLTL -+ CLRTR -+ Su (58)
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Figure 15: An example of the meshing process, where a 1D bar is divided into 5 cells/finite
volumes. Cell 1 and cell 5 are boundary cells, whereas cells 2, 3 and 4 are interior cells.

Tp (DA + 0+ 2D, A,) =Ty, (D/A)+Tr 0 +Tp (2D, A,) + SV (59)
— ~—
ap ar, OR Su

For comparison with the interior cell, the boundary cell (right) has the following coefficients:
ar, :DlAl CZR:O ap:aL—l—aR—Sp (60)
Sp=—-2D,A, S.=Tg(2D,A,) + SV (61)

Summary of Coefficients

A summary of the finite volume coefficients is provided in the table below for interior and
boundary cells. Notice that the boundary cells have zero contribution from the cells that
would extend outside of the domain. The boundary conditions are introduced through the
source terms .S, and S,,.

ay, aRr ap Sp Su
Boundary (L) 0 DRAR a; = ay — Sp —2DLAL TA(QDLAL) “F §V
Interior DpAr, DrAp aj+a,— S, 0 SV

Boundary (R) DLAL 0 a; + a, — Sp —2DRAR TB(ZDRAR) =F FV

Meshing the Geometry

Before solving the finite volume equations, the physical geometry of interest needs to be
divided into discrete cells/ volumes. This process is called meshing and is the most significant
part of the CFD solution process because the quality of the mesh affects the accuracy and
stability of the solution. The meshing process will not be examined here, as the primary aim
of this course is the implementation of the finite volume method. An ideal quadrilateral mesh
will be used for the 1D geometry, as shown in Figure 15. In the next section, the set of finite
volume equations will be assembled for the all cells in the mesh.

Write an Equation for Every Cell in the Mesh

Conceptually, the next stage in the finite volume method is to construct an equation for every
cell in the mesh individually. The equation written for each cell is coupled to the equations
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written for the neighbours of that cell. As an example, consider a 1D mesh with 5 cells, as
shown in Figure 15. Cell 1 is the left boundary cell and cell 5 is the right boundary cell. Cells
2, 3 and 4 are interior cells. The individual finite volume equations are:

Cell 1 Boundary Cell (Left) a7y = anTs + Su

Cell 2 Interior Cell ap Ty = a1y + aroTs + Syo
Cell 3 Interior Cell ap3T3 = alng - CLT3T4 = Su3
Cell 4 Interior Cell apaTy = T3 + arsTs 4 Sya

Cell 5 Boundary Cell (Right) aus15 = a;sTs + Sus

where the coefficients a,,ar,ar and S, are given in the summary in the previous section.
Notice that the interior cells are coupled to the temperature of the cells on the left and right
hand side of them. In contrast, the boundary cells are only coupled to the temperature of a
single cell centroid (the interior cell that they are in contact with). The boundary conditions
enter the equations through the source terms 5,,.

Assemble the Matrices

To assemble the matrices, rearrange the equations by bringing all the temperature terms to
the left hand side. Leave the source terms on the right hand side.

Cell 1 Boundary Cell (Left) a7y —anTs = S

Cell 2 Interior Cell —apTi + apTh — aoTs = Sy
Cell 3 Interior Cell —ai3Ts + apsTs — arsTy = Sy3
Cell 4 Interior Cell —auTs + apaTy — araTs = Sua

Cell 5 Boundary Cell (Right) —a;5Ty + apsT5 = Sus
Add additional zero values for the missing temperatures in each equation.

Cell 1 Boundary Cell (Left)  anTy — a1 Th + 015 + 0Ty + 075 = Sz

Cell 2 Interior Cell —apTh + apTs — a1 + 0Ty + 015 = Sy
Cell 3 Interior Cell 0T1 — alng S Clpng — CL,«3T4 == 0T5 = Sug
Cell 4 Interior Cell 0T1 — CL[3T2 == ap3T3 — CLT3T4 = 0T5 = Su3

Cell 5 Boundary Cell (Right) 0T} + 075 + 075 — ;5T + apsTs = Sus

Write the equations in matrix form:

ap1  —0y 0 0 0 T Sul
—Qi2  Gp2 —Qr2 0 0 15 Su2

0 —aus Qp3 — Q3 0 Tg = Sug AT =B (62)
0 0 —Qrg Apsa —0Qpq Ty S

0 0 0  —a;  ap Ts Sus

which is the standard form used in linear algebra. Commercial CFD solvers populate the
matrices by calculating the coefficients (a;,a, and a,) automatically for the user and then
solve the matrix equations. In the next section, the entire process will be demonstrated with
an example problem. A mesh will be defined, the coefficients will be calculated and then the
matrices will be constructed and solved.
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Figure 16: An example problem to demonstrate 1D heat-diffusion in a bar.

Example Problem: Heat Diffusion in a Bar

Consider 1D steady-state diffusion of heat in a bar, as shown in Figure 16. The bar has a
length of 5m, a cross-sectional area of 0.1 m? and a thermal conductivity of 100 W/mK. The
temperature at the left end of the bar (T4) is 100°C' and the temperature at the right end
(Ts) is 200°C'. There is a constant heat source of 1000 W/m? in the bar. The temperature
field in the bar is governed by the 1D steady-state diffusion equation.

d (. dTI'

- (kdx> +5=0 (63)

Step 1: Divide the Geometry into a Mesh

For the example in Figure 16, divide the geometry into a mesh of 5 cells of equal length. The
length of each cell (Lce) is given by:

o _ Im (64)

L
Lce = 37 =
I N 5

Because the cells are uniformly distributed and have equal size, the distance between cell
centroids d is equivalent to the length of the cells. Hence:

de:dpR:d: Im (65)

Step 2: Assign Material Properties

The thermal conductivity k& and the cross-sectional area A are the same for every cell in the
mesh. Hence, the parameter DA is given by:

kA 100%0.1
o d 1

DA, = D, A, = DA = 10 [W/K] (67)

DA =10 [W/K] (66)

The heat source per unit volume in each cell is given by:

SV = SALc = 1000 % 0.1 % 1 = 100 [W] (68)
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Step 3: Calculate Matrix Coefficients

Now calculate the coefficients required to assemble the matrices. The most straightforward
way is to fill in the table of coefficients:

ar, ar S, Su a
Boundary (Left) 0 10 -20 2100 30
Interior 10 10 0 100 20
Boundary (Right) 10 0 -20 4100 30

Step 4: Assemble the Matrices

Assign the coefficients to their correct location in the matrix.

30 —10 0 0 0 7] [2100
~10 20 =10 0 0 T, 100
0 —10 20 —10 0 Ty| = | 100 (69)
0 0 -10 20 —10 ||Ty 100

0 0 0 —-10 30 T5 4100

Step 5: Solve the Equations

Now that the matrices have been assembled, the matrix equation can solved with an ap-
propriate iterative method. An iterative method (such as Gauss-Seidel or Pre-conditioned
Conjugate Gradient) is usually chosen by modern CFD codes, as the equations are usually too
large for a direct method (like Gaussian Elimination) to be feasible. For example, a mesh with
1 million cells will require the solution of a matrix equation with 1 million unknowns. This
is not feasible to solve in a reasonable time with a direct method. In this course, different
algorithms to solve the matrix equation AT = B will not be considered, as details can be
found in any comprehensive text on linear algebra. The default solvers for linear algebra will
be used instead.

Run the Example Problem Yourself!

Now, open either the Excel spreadsheet or the Python source code and solve the problem
yourself.

Excel solvelDDiffusionEquation.xlsx

Python solvelDDiffusionEquation.py

Examine the calculation of the coefficients, the assembly of the matrices and run the code.
You can even try changing some of the geometric and material properties of the problem
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(such as the thermal conductivity or the length of the bar) and examine the changes in the
solution.

Results

The blue circles in Figure 17 show the temperature variation in the 1D bar computed with the
CFD code. The dashed line shows the analytical solution of the 1D heat diffusion equation
with a constant heat source (.S) which is given by:

T:TA+£(TB—TA)—|—§$(L—Q:) (70)
L 2k

As shown in Figure 17 (a), there is a small error between the CFD solution and the analytical
solution. This is because the finite volume method assumes a linear variation between cells,
whereas the analytical solution (for this flow scenario) is quadratic in nature. To reduce the
error in the CFD solution, the mesh needs to be refined by increasing the number of cells.
Figure 17 (b) shows the CFD solution of the same problem, with the number of cells increased
from 5 to 20. The error in the CFD solution is reduced. However, the computational cost
of the simulation has increased significantly. Hence, for practical CFD applications, a careful
balance must be made between increased accuracy and increased cost of the simulations.
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Figure 17: Temperature variation along the 1D bar for a mesh of (a) 5 cells and (b) 20
cells.
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